

CONFERENCE ON SUSTAINABLE DEVELOPMENT OF ENERGY, WATER AND ENVIRONMENT SYSTEMS

The Sustainability of Plastic and its Alternatives

Moderators

Jiří Jaromír Klemeš, Yee Van Fan

^aSustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno

University of Technology - VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

14th Conference on Sustainable Development of Energy, Water and Environment System (SDEWES 2019), 1 – 6 October 2019

Prof. Mário Costa

Instituto Superior Técnico, Lisboa, Portugal

Prof. Daniel Rolph Schneider University of Zagreb, Zagreb, Croatia

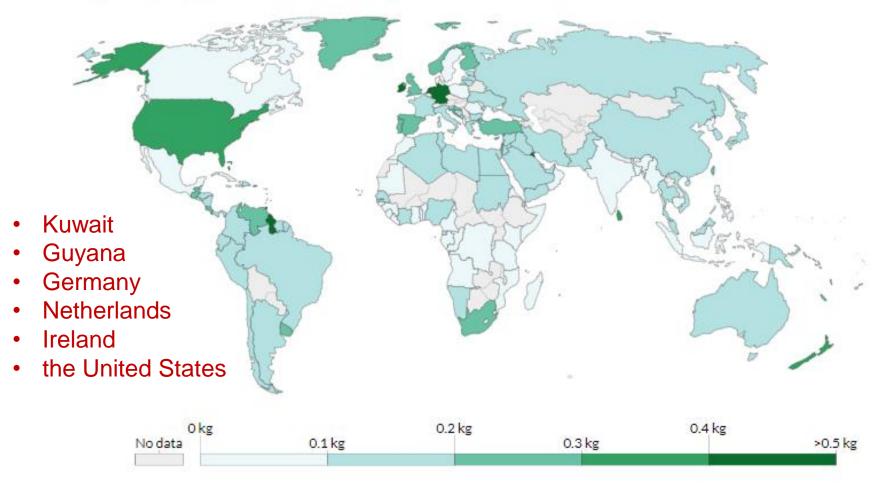
Prof. Slaven Dobrovic University of Zagreb FAMENA, Zagreb, Croatia

Prof. Aoife Foley Queen's University Belfast, Belfast, United Kingdom

Dr. Ting Ma Xi'an Jiaotong University, Xi'an, China

Nearly 50 years ago

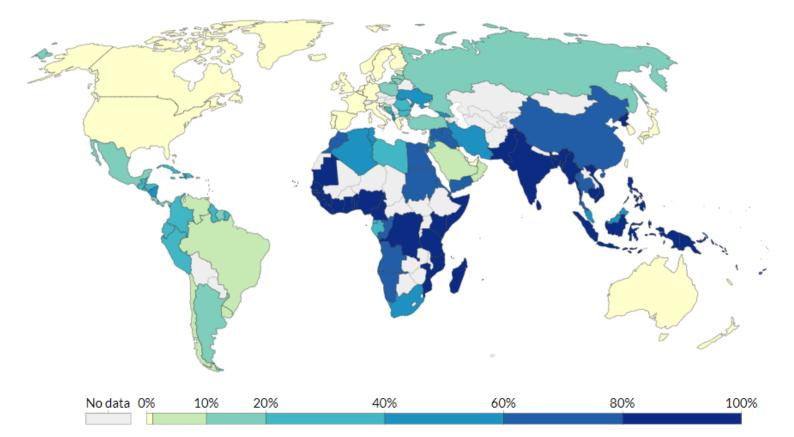
"Increasing production of plastics, combined with present waste-disposal practices, will undoubtedly lead to increases in the concentration of these particles." (Carpenter and Smith, 1972)



Harm to Wildlife - Ingestion, Entanglement

Carpenter, E. J.,Smith, K. L. (1972). Plastics on the Sargasso Sea surface. Science, 175(4027), 1240-1241. Photo: www.theguardian.com/environment/2018/nov/13/the-plastic-backlash-whats-behind-our-sudden-rage-and-will-it-make-a-difference Brooks AL, Wang S, Jambeck JR, 2018. The Chinese import ban and its impact on global plastic waste trade. Science Advances, 4(6), eaat0131.

Plastic Waste Generation Per Person


Daily plastic waste generation per person, measured in kilograms per person per day. This measures the overall per capita plastic waste generation rate prior to waste management, recycling or incineration. It does not therefore directly indicate the risk of pollution to waterways or marine environments.

<ourworldindata.org/plastic-pollution>

Share of Plastic Waste That is Inadequately Disposed

Share of total plastic waste that is inadequately managed. Inadequately disposed waste is not formally managed and includes disposal in dumps or open, uncontrolled landfills, where it is not fully contained. Inadequately managed waste has high risk of polluting rivers and oceans. This does not include 'littered' plastic waste, which is approximately 2% of total waste (including high-income countries).

Many countries in South Asia and Sub-Saharan Africa, between 80-90 percent of plastic waste is inadequately disposed of, and therefore at risk of polluting rivers and oceans <ourworldindata.org/plastic-pollution>

Microplastic

- Plastics less than 5 mm (0.2 inches) in diameter
- Primary: Fibres, pellet, cosmetic microbeads, capsules

THE I KU

Secondary

Teabag

Biodegradable plastic — Bioplastic

Photo Credit: National Oceanic and Atmospheric Administration

Impacts of Microplastics

- slower metabolic rate and survival in Asian green mussels
- reduced reproducibility and survival in copepods
- reduced growth and development of *Daphnia*
- reduced growth and development of langoustine
- reduced energy stores in shore crabs and lugworms
- Many organisms do not exhibit changes in feeding after microplastic ingestion. A number of organisms, including suspension-feeders (for example, oyster larvae, urchin larvae, European flat oysters, Pacific oysters) and detritivorous (for example, isopods, amphipods) invertebrates show no impact of microplastics
- There has been no evidence of harmful effects to date

Microplastics in water pose 'no apparent health risk'

<www.bbc.com/news/health-49430038>

<ourworldindata.org/plastic-pollution>

McDonald's new paper straws - described as "eco-friendly" by the US fast food giant - cannot be recycled.

Customers were unhappy with the new straws, saying they **dissolved** before a drink could be finished, with milkshakes particularly hard to drink.

No Straw maximum of a 0.03 % reduction

Frappuccino, Milk Shake

<www.bbc.com/news/business-49234054>
<ourworldindata.org/faq-on-plastics#what-are-microplastics>

Plastic vs Paper Cup

- Consumes 33 g of wood in production per cup
- Uses **28 % more oil** than a plastic crucible.
- Needs 36 times more chemicals
- Consumes 580 times more wastewater
- Produces 10 to 100 times more pollutant residual waste and 3 times more emissions
- Incinerate: Paper provides 20 MJ per kg and polystyrene gives 40 MJ per kg.
- Waterproof plastic layer **non recyclable**
- Plastic: Cheaper, lighter

Royal Society of Chemistry

<www.rsc.org/education/teachers/resources/inspirational/resources/6.2.2.pdf#targetText=In%20total%20about%2033%20g,polystyre ne%20one%20about%201.5%20g.>

The Impacts of Different Materials

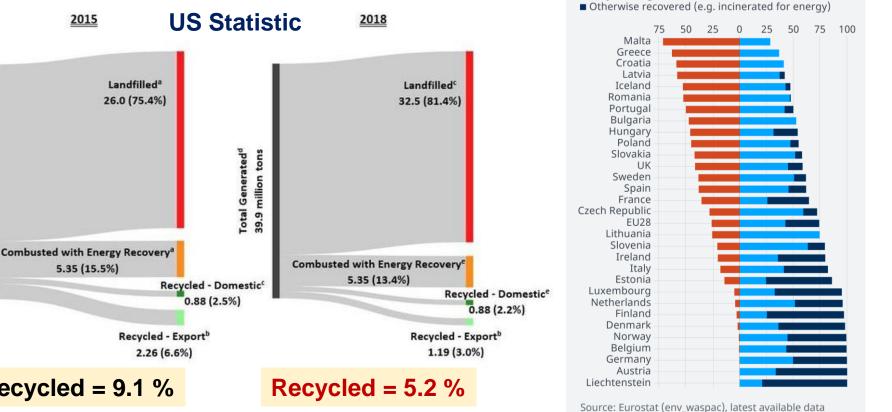
Bag type	Number of reuses	Consumption			Litter marine		GHG		
	required for life	Ene	ergy	Water	M	aterial	impacts	5	
	cycle equivalence								
	with an HDPE bag			Usage	1		Leak	age	
HDPE	-	* *		•	* *	♦	****		* *
Paper	3	***	••	***		***	•		****
LDPE	4	***		•	* * ·	♦ ♦	****		* *
Non-woven	11	•		•	•		* *		•
polypropylene									


Trade off? Overall Impacts?

Plastic materials might provide far more environmental benefits than drawbacks

NSW EPA, 2016. Plastic shopping bags: Practical actions for plastic shopping bags <www.epa.nsw.gov.au/~/media/EPA/Corporate%20Site/resources/waste/160143-plastic-shopping-bags-options.ashx>

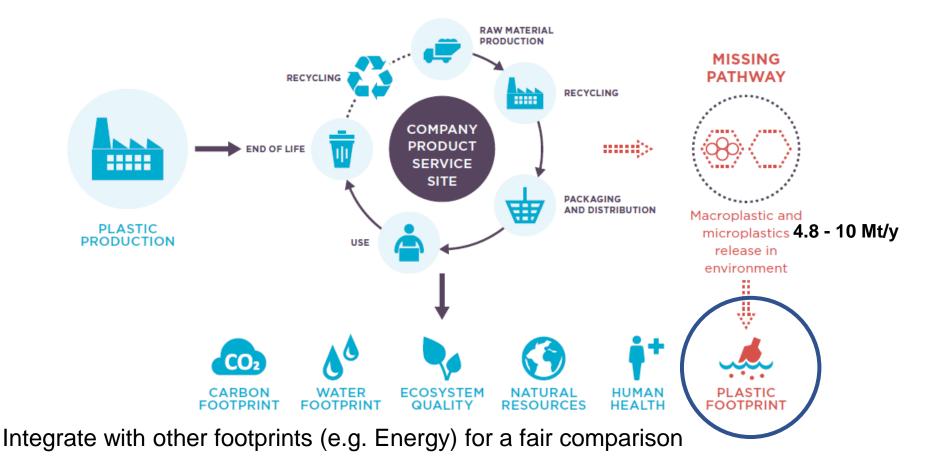
The Accounting and Challenges


<www.plasticpollutioncoalition.org/blog/2019/4/29/six-times-more-plastic-waste-is-burned-in-us-than-is-recycled>

EU Statistic

34.5 million tons **Fotal Generated**^a

39 % Incinerated, 31 % Landfilled, 20% Recycled = 100%


Leakage? Marine Litter?

Not recovered (e.g. ends up in landfills) Recycled (e.g. materials reused)

Plastic Leakage – Proposed Framework

Under-development \rightarrow Challenge: Data, Fate of macro and microplastics

IUCN, Review of Plastic Footprint Methodologies <portals.iucn.org/library/sites/library/files/documents/2019-027-En.pdf>

print C Inde 0 C 5 σ 0 Existi C Ο Σ **Jeve**

Name of Methodology	Link	Include microplastics	Date of release
Plastic Scan	http://oceanimpact- quickscan.azurewebsites.net	NO	2017
Plastic Disclosure Project (PDP)	http://plasticdisciosure.org	NO	2016
Plastic Footprint for Companies	https://www.plasticsoupfoundation.org/ en/psf-in-action/plastic-footprint-3/	YES	2017
Plastic Scorecard	https://www.bizngo.org/sustainable- materials/plastics-scorecard	NO	2014
Marine Plastic Footprint	n.a.	YES	n.a. 2019
Plastic Leak Project	https://quantis-inti.com/metrics/initiatives/ piastic-leak-project/	YES	n.a. 2019
Circularity Indicators Methodology	https://www.ellenmacarthurfoundation.org/ programmes/insight/circularity-indicators	NO	2015
Plastic Drawdown	https://www.commonseas.com/projects/ plastic-drawdown	YES	2019
Marine Impacts in LCA	n.a.	YES	n.a.
PlastikBudget	n.a.	YES	n.a. 2020
Plastic Pollution Calculator	n.a.	NO	n.a. 2019
PET Collection, Landfill and Environment Leakage Rates in South East Asia	https://www.gacircular.com/publications/	NO	n.a. 2019
Plastic Life Cycle Assessment (LCA)	https://epica.jrc.ec.europa.eu/permalink/ plastic ici/plastic ica report/2018.11.20.pdf	YES	n.a. 2020
PIPro SEA	n.a.	NO	2019
National Guidance For Marine Plastic Hotspotting and Shaping Action	n.a.	YES	n.a. 2019
A Global Roadmap to Achieve Near-zero Ocean Plastic Leakage	n.a.	YES	n.a. 2019
Plastic Footprinter	http://www.plasticfootprint.ch	NO	2014
My Little Plastic Footprint	http://mylittieplasticfootprint.org	YES	2017
Plastic Calculator	http://secure.greenpeace.org.uk/page/conte	NO	2016

SPIL

Not included in all methodologies

	Plastic use & waste generation	
	Circularity	
Scope of the assessment	Plastic leakage	
	Environmental impacts (from plastic leakage)	
	Microplastics	
	Polymer specific (but not related to littering)	
	Application specific	
Granularity of the assessment	Sector specific	
	Country specific	
	Archetype specific (by income level)	
	Online version	
Description of the tool	Labelling/accreditation scheme	
	Includes forecasting and scenario analysis	
	Calculation rules transparent and available	
Decembra of	Data collection guidance available	
Description of the guidance	Dataset available	
	Case studies available (related to plastic leakage)	

X comparison

IUCN

Review of Plastic Footprint Methodologies <portals.iucn.org/library/sites/li brary/files/documents/2019-027-En.pdf>

Are Ban and Reduction a Sustainable Solution?

Plastics are just too efficient to be easily replaced!

Alternative Strategies and the Strategies and the Challenges to Overcome

- Control Marine Litter
- Post consumer feedstock (as metal scrap market) → e.g. Upcycling

ASTM D5033 définitions	Equivalent ISO 15270 (draft) definitions	Other equivalent terms
Primary recycling	Mechanical recycling	Closed-loop recycling
Secondary recycling	Mechanical recycling	Downgrading
Tertiary recycling	Chemical recycling	Feedstock recycling
Quaternary recycling	Energy recovery	Valorization

Redesign + Recycling

Mixed Plastic Pigments Additives Contaminants

Challenges

JUST BECAUSE YOU'RE TRASH DOESN'T MEAN YOU CAN'T DO GREAT THINGS.

IT IS CALLED GARBAGE CAN, NOT GARBAGE CANNOT.

Regulate the Manufacturer or Consumer?

Most of the time the focus is on consumer Responsibility of consumer?

Waste separation/ recycling, Blaming

The Arguments of Producers are the Key

- Separating/Collecting is not recycling
- Consumers purchase according to the given choice by the manufacturers
- Manufacturers know the material composition well
- Producers to manage products at the end of its life - Fingerprint
- Encourage redesign (use recycled materials, improve the easiness for recycling) and improvement

The sustainability of plastics and its alternatives

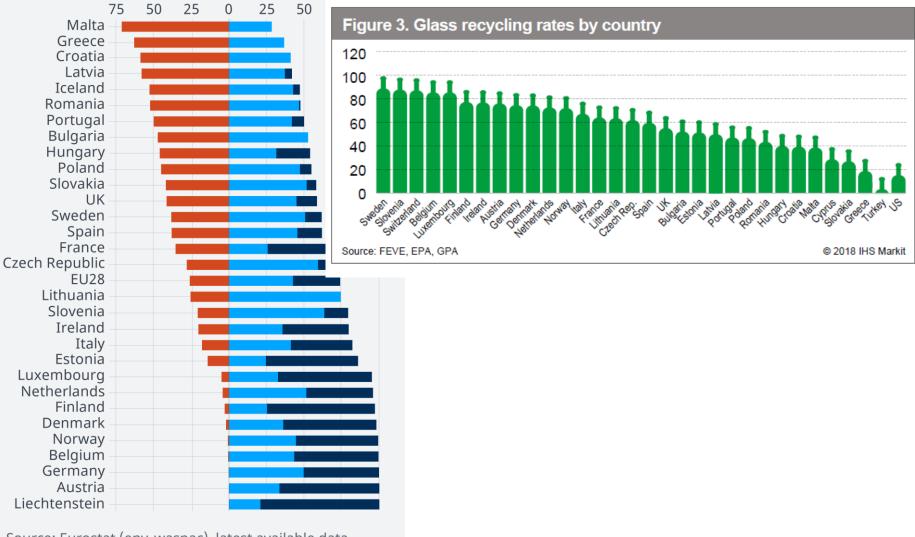
by

Aoife M. Foley,

Reader, Queen's University Belfast

Editor in Chief, Renewable & Sustainable Energy Reviews, Elsevier

Dead Dinosaur Advice


Plastic: Wasted or recovered?

Share of plastic packaging waste that is

- Not recovered (e.g. ends up in landfills)
- Recycled (e.g. materials reused)

Otherwise recovered (e.g. incinerated for energy)

Plastic packaging is made from seven different types and some are recycled more often than others

Tweet

Email 25

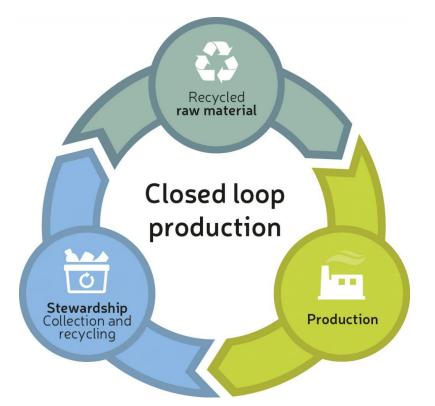
China took 95% of Ireland's plastic waste - but now it's changed its mind and we're in trouble

Iags # BIN CHARGES # CRISIS LEVELS # DENIS NAUGHTEN # FOUD WASTE


Jan 9th 2018, 6:01 AM 💿 121.680 Views 🛑 100 Comments 🕴 Share 2743

Ireland is the top producer of plastic waste in the European Union.

IRELAND'S INCREASING WASTE and plastic levels are soon to meet emergency levels following China's ban on imported plastics, according to one government source.


China – the world's largest recyclable materials importer – decided to ban the importing of plastics from European countries, such as Ireland, last year. The policy came into effect on 1 January.

China took 95% of Ireland's plastic waste in 2016, but a ban will mean that's no longer possible. While many other European nations are searching for alternative waste-management solutions, Ireland is in a particularly dire situation.

Messages

- No one solution
- It is not a case of glass versus plastic
- It is a **COMPLEX LCA problem**
- Growth in more complicated product
- Composite materials e.g. tetrapak
- Issues include;
 - ➢ Knee jerk actions/reactions
 - Human behaviour
 - > Industry
 - Environment, energy & equity
 - End of life = New Product
 - Circular economy
 - Virtual foot prints
 - Regulation and governance

Plastics in environment – do we look for a solution?

Slaven Dobrović

Plastics – unavoidable material of todays world

335 million tons/year in world, (60 million tons/year in EU)

Leakages to environment:

- Improper waste management
- Tear and wear during the lifecycle
- Intentionally added microplastics

Plastic waste

PLASTIC WASTE - Europe:

Around 25.8 million tons/year Less than 30% of such waste is collected for recycling Landfilling and incineration rates of plastic waste– 31 % and 39, respectively

According to estimates, 95 % of the value of plastic packaging material, i.e. between EUR 70 and 105 billion annually, is lost to the economy after a very short first-use cycle.

It was estimated that plastics production and the incineration of plastic waste give rise globally to approximately 400 million tons of CO_2 a year.

Using more recycled plastics can reduce dependence on the extraction of fossil fuels for plastics production and lower CO_2 emissions.

Microplastics that are created during the lifecycle of a product through wear and tear

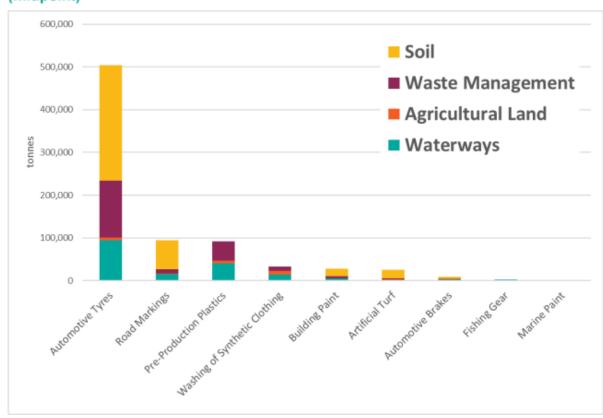


Figure 1 - Source Generation and Fate of Microplastics from Wear and Tear in the EU (midpoint)

Source: Eunomia modelling

Intentionally added microplastics, designed to be emitted during the lifecyccle

European Commission (DG Environment) Intentionally added microplastics in products Final report

Table 2.5 Microplastic functions in different products

Function	Products		
Abrasive/exfoliating	Cosmetics, detergents, industrial blasting abrasives		
Emulsifier, suspending agent	Cosmetics, detergents, paints		
Binding	Cosmetics, paints, inks, concrete		
Filler	Construction (wall and joint fillers, self levelling compounds/screeds)		
Control release of ingredients	Pharmaceuticals (nanocapsules), cosmetics, fertilisers, crops, detergents (enzymes)		
Film forming	cosmetics, polishing agents		
Surface coating	paper making, polishing agents,		
Improved chemical and mechanical resistance	Coatings, paints, floor coatings, polymer cement		
Fluid absorbents	nappies, water retainer for farming, agriculture, horticulture		

²² Deloitte: Technical assistance related to the review of REACH with regard to the registration requirements on polymers, final Report for DG ENV, 2014.

²³ D. Lithner, A. Larsson, G. Dave: Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409, 3309-3324, 2011.

October 2017 Doc Ref. 39168 Final Report 17271i3

Function	Products
Thickening agent	paints, cosmetics, concrete, oilfield use (drilling fluids)
Aesthetics	coloured microplastics in make-up, structural effects of paints, enhanced gloss level of paints
Flocculant	Waste water treatment, oilfield use, paper making
Dewatering	Paper making, dewatering of sewage sludge, manure
Dispersing agent	Paints, coatings (pigments)
Opacifying agent	Cosmetics
Anti-static agent	Cosmetics / hair care

Table 3.6 Sector-level overview of tonnages and concentrations of microplastics in products

Sector	Product	Total tonnage of microplastics used by the sector in the EU (estimate based on consultation and literature)	Total tonnage of products containing microplastics sold by the sector in the EU	Concentration of microplastics in products that contain microplastics
Personal care	Rinse-off products containing exfoliating and cleansing microbeads (as indicated by Cosmetics Europe) Further product breakdown available (see Appendix B).	714-793 tonnes (exfoliating and cleansing microbeads in rinse-off products)	Unknown. It is estimated based on Eurostat data that the total European market for personal care products (with and without microplastics) comprises around 3-5 million tonnes in the EU28.	Unknown
	Leave on PCPs containing microplastics (as indicated by Cosmetics Europe in reaction to estimates from Eunomia 2016)	540-1 120 tonnes (Synthetic polymers and/or copolymers (plastics); Solid phase materials (plarticulates, not liquids); insoluble in water; Non- degradable; and small size (maximum 5 mm, no lower size limit is defined)).	1.5 million according to Eunomia (2016)	Weighted average calculated from Eunomia (2016): 2.4% Range 0.005%-72% according to Eunomia (2016)
Paints/coatings	Waterborne building paints (as indicated by CEPE)	220 tonnes (Solid non-biodegradable polymeric particles with physical dimensions between 1μ - 5 mm originating from anthropogenic sources)	14 000 tonnes	Weighted average 1.6% w/w. Range approximately 1%-2%.
	All other	Other sources suggest it could be significantly higher, but estimates are very uncertain. Extrapolation from Danish Environmental Protection Agency (2015) (200-350 tonnes of microplastics in building paint sold in Denmark) suggests 22 000-38 000 tonnes.	Unknown. According to Eurostat data, an estimated 14 million tonnes of paints, varnishes and similar coatings, printing ink and mastics (with and without microplastics) are sold in the EU28.	0.4% in building paint sold in Denmark according to Danish Environmental Protection Agency. Unknown for other products.
Detergents	Soaps, Detergents and Maintenance Products Further product breakdown available (see Appendix B).	190-200 tonnes (water insoluble solid plastic particles with a size less than 5mm that can be found as marine litter) suggested by AISE is not contradicted by literature.	3 572 tonnes	Weighted average (all Soaps, Detergents and Maintenance Products): 4.0% Range (of weighted averages per product category): 0.7%-4.9%
Abrasives	Sandblasting	Extrapolation from Danish Environmental Protection Agency (2015) (use in sandblasting in Demmark 5-25 tonnes) suggests 1 000-5 000 tonnes (Persistent, solid particulates composed of synthetic or semi-synthetic polymers and physical dimensions of 1 µm - 5 mm originating from anthropogenic sources), subject to <u>high uncertainty</u> .	Unknown. According to Eurostat data, an estimated 500 000 tonnes of abrasive products (with and without microplastics) are sold in the EU28.	Unknown
	Additional uses of microplastics are suspected in this sector for which no information on tonnage was available. Abrasives industry (FEPA) stated that in its main applications in this sector, microplastics are not present in the final product as they are either cross-linked (as part of the bonding systems) or burned (as technical filler) during the production process.	Unknown	Unknown. According to Eurostat data, an estimated 500 000 tonnes of abrasive products (with and without microplastics) are sold in the EU28.	Unknown
Oil and gas	Off-shore drilling and production	No precise quantitative estimate possible, but could be substantial (in the magnitude of hundreds of tonnes) according to some sources.	Unknown.	Unknown.
Agriculture	Nutrient prilis / slow-and controlled- release fertilisers	Up to a maximum of about 8 000 tonnes (Trenkel 2010 suggests that 1 700-8 000 tonnes of polymers are used in these products in "Western Europe". no sufficient information is available to estimate what share of these polymers constitute microplastics in the EU)	Up to 40 000 tonnes according to Trenkel (2010) (refers to products containing polymers in "Western Europe").	Polymer coated fertilisers: up to 3-15% Sulphur-coated urea (SCU / Polymer- coated sulphur-coated urea (PSCU): up to 2% According to Trenkel (2010), refers to polymers (an uncertain share of which constitute microplastics)
	All other	No quantitative estimate possible.		
Pharmaceutical industry		No quantitative estimate possible, but the industry claims no significant amounts of microplastics are used in the EU currently.		

Risk assessment

© Amec Foster Wheeler Environment & Infrastructure UK Limited

		Receptor		
			Humans exposed	
		environment	via the	
			environment	
	Physical	?	?	
Effects				
	Toxic	?	?	

SOLUTION?

OUR STRATEGY FOCUSES ON 4 AREAS:

PLASTIC WASTE FACTS FROM AROUND THE GLOBE

FACT 2

FACT 1

90%

Just ten rivers transport more than 90% of riverbased plastics to the ocean.

VIEW INFOGRAPHIC \longrightarrow

FACT 4

Research has identified the most significant sources of unmanaged plastic waste, and key aspects of the solution

BO%

80% of ocean plastic

comes from land-

based sources

FACT 3

Over half of land-based plastic waste leakage comes from just 5

comes from just 5 countries

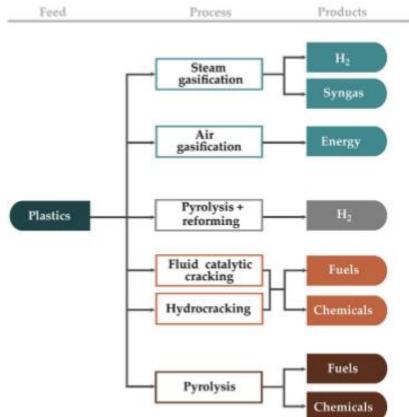
SHARE THIS O

FACT 5

Replacing plastics in packaging and consumer products with alternative materials could raise environmental costs nearly fourfold

Pyrolysis of Non-Recycled Plastics

Mário Costa Instituto Superior Técnico Universidade de Lisboa, Lisboa, Portugal


14th SDEWES Conference, Dubrovnik, 2019, October 1-6 Panel: The sustainability of plastic and its alternatives


Introduction

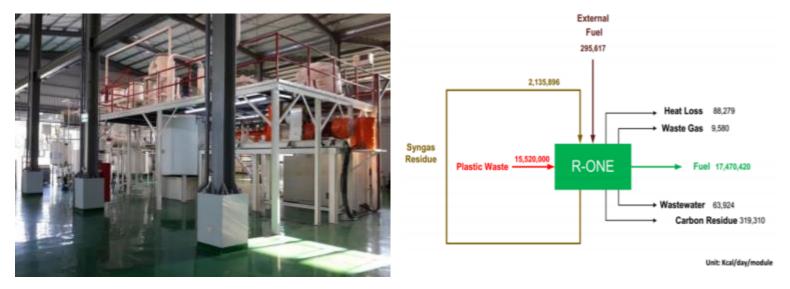
Non-recycled plastics (NRP) cause a huge environmental problem.

Possible solutions for chemical valorization of NRP (Lopez et al., RSER, 82, 576-596):

NRP (co-)pyrolysis main drawbacks:

TÉCNICO

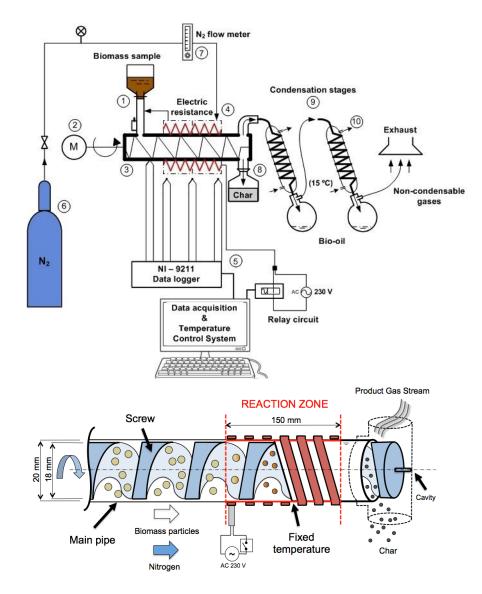
- High external energy demand, high capital cost, and inconsistent product quality,
- Difficult to stablish one single route for all types of NPR, due to their different composition,
- Define optimal pyrolysis conditions to diminish the release of dioxins, pollutants to soil and underground water,
- Need to purify the bio-oil produced from pyrolysis technology.


Should these drawbacks solved, pyrolysis of NRP would result in a higher reduction of CO2 emissions as compared to incineration processes with energy recovery.

Final notes

NRP pyrolysis technology is poorly developed, being the needed economic investment quite high so that competition with current oil production prices is very difficult.

Demonstration facility in Hukou, China (Yu et al., 2018, IJESD, 9, 95-99) CO2 emissions reduction of about 70x compared to incineration



Co-pyrolysis of plastics with biomass appears to be a promising valorization route due to the positive impact on process performance and greater process flexibility.

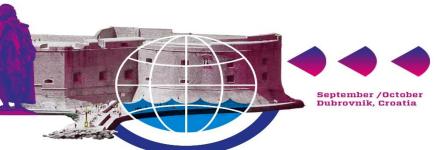
Other promising alternative is the pyrolysis and in-line reforming, which allows producing a syngas with high hydrogen content and totally free of tar.

IST: Biomass pyrolysis

FSB 100

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu

100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb


Panel: The sustainability of plastic and its alternatives

A small contribution to the debate on the sustainability of plastic waste management

Prof. dr.sc. Daniel R. Schneider Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb

STUDIORUM SSTUDIORUM S



Department of Energy, Power Engineering and Environment

Introduction

- The <u>overall plastic production</u> in the world is growing at a <u>steady rate</u> of approximately 4% per year.
- In 2016, the <u>global production of plastics</u> was 335 million tonnes, while in **2017** that number increased to **348 million** tonnes.

- Plastic production in Europe reached almost 65 million tonnes in 2017.
- The <u>biggest producer of plastic products</u> today is **the packaging industry** which makes up for **almost 40%** of <u>European plastic converter demand</u>.
- In <u>one year</u> roughly 80% of produced <u>plastic packaging in Europe</u> turns into <u>waste</u>.
- In <u>2016, for the first time</u>, a larger share of overall <u>collected post-consumer</u> <u>plastic waste</u> in the European Union (EU) was **recycled (31%) than landfilled** (27%), while the rest was **energy recovered (42%)** mostly by incineration.

Current status and plans

- The EU goals in the field of municipal waste management, as defined in various directives and plans, prescribe an increase of the <u>recycling</u> rate for municipal waste to 50% by 2020, and 65% for the period up to 2035.
- At the same time, the share of packaging waste recycling in the EU (according to modified goal in 2018 in plans of the circular economy) has to rise to 70% by 2030 (in which 55% of recycling of plastic waste packaging), which will be <u>difficult</u> to achieve <u>without efficient and comprehensive separate</u> <u>collection and material recovery (recycling) of packaging waste</u>.
- The <u>ban on the import into China</u> of 24 solid waste categories, which includes many types of **recyclable plastics**, paper and textiles, poses new problems for EU Member States (as well as the US and other countries) that have largely addressed their waste recycling by exporting to China → e.g. <u>the EU</u> has so far <u>exported 50%</u> of its <u>collected and sorted plastic waste</u>, <u>80%</u> of which to China), and so EU countries currently do <u>not have enough local capacity or economic reason to recycle all of this recyclable waste</u>. → other Asian countries follow the China's decisions.

Recycling

- <u>Avoidance</u> is at <u>the top</u> of the waste hierarchy. (e.g. light weight bags and single-use plastic cutlery ban.
- Also certain types of waste (WEEE, bulky, medical, bio, textile, nappies, etc.) should <u>not enter</u> into the separately collected <u>waste stream</u>. (e.g. via yellow bins and containers), but the reality is different.
- As well as **re-usable waste**, which should <u>not</u> be a <u>part of separately</u> <u>collected waste</u>
- The responsibility is here on households.
- Regarding <u>material recovery</u> of <u>separately collected waste</u> (including plastics), the **recyclable waste** sorted out of this stream is only **20-35%**, as one analysis in the neighbouring country showed.
- The rest is used for <u>energy recovery</u> as a <u>fuel (SRF, RDF)</u> for <u>waste-to-energy</u> and <u>cement plants</u> (if we want to <u>avoid landfilling</u> entirely, or as it is prescribed by EU targets that <u>no separately collected waste is landfilled</u> or to reach maximal <u>10% of waste landfilling to 2035</u>).
- The situation is much worse for <u>recyclable material</u> recovered from <u>mixed</u> <u>municipal waste</u> where this percentage reaches single digit values, e.g. **8%**.

Material recovery

- Material recovery facilities (MRF) face today problems with contamination of (plastic) waste, but also complexity of waste (more different and new materials, and pollutants), which puts limits to the current state of the art in mechanical (but also chemical) technologies for waste sorting, processing, recycling and recovery.
- Data from another country in the region showed that the <u>overall efficiency of</u> <u>performance of a mechanical waste processing plant</u> for <u>non-hazardous mixed</u> <u>waste</u> materials in practice is only **about 30-40%** <u>of the theoretical efficiency</u>, which is not enough to reach (economically) the required rates set by new EU targets.
- In the future, better (online/on-time) tracking (and characterization) of input waste and output material qualities, digitalization, new sensors, imaging-based classification, inteligent robotics, self-optimizing machines all integrated in smart material recovery facilities, can help to push these limits.
- Question of recyclability of solid recovered fuels in clinker material the recyclable part of the ash derived from SRF utilized for energy recovery in cement industry – legislation still does not recognize it.

Inteligent Robotics in plastic sorting

 Both systems: ~4000 picks per hour and arm

> ZenRobotics Recycler - robotic sorting station

Video 1. Example of application of robots in (plastic) waste sorting industry/recovery – heavy/bulky rigid plastics.

Sorted fractions:

- rigid plastics from mixed waste
- rigid plastics by polymer (PP, PE, PET, PVC)
- rigid plastics by shape and colour
- unlimited sorts

(Source: ZenRobotics, Finland)

Video 2. Sorting system MAX-AI AQC (USA) – lightweight packaging plastics (removing non-PET material)

Inteligent Robotics in plastic sorting

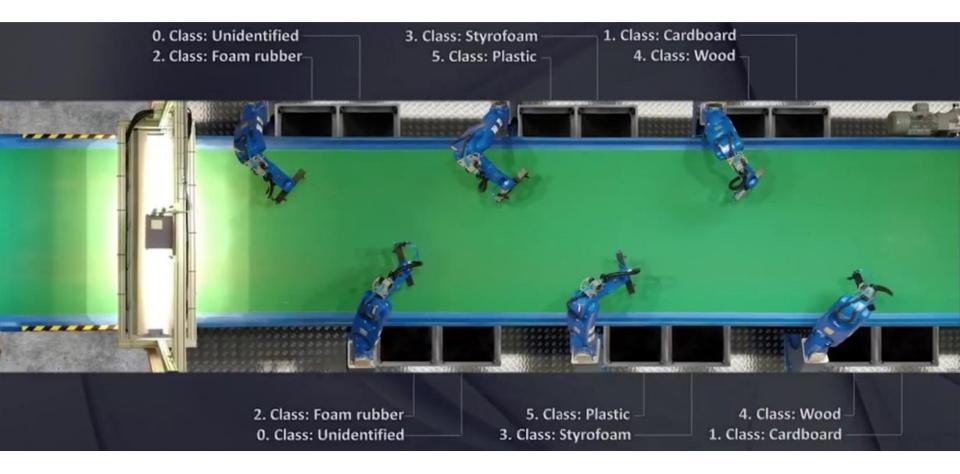
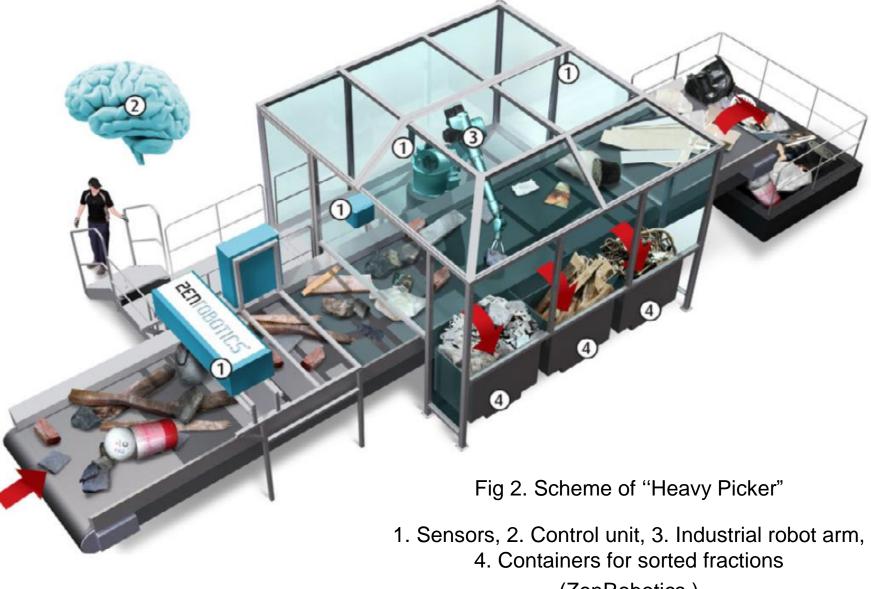



Fig. 1. SELMA sorting system (OP teknik AB)

Inteligent Robotics in plastic sorting

(ZenRobotics)

Extended Producer Responsibility

- Different Extended Producer Responsibility (EPR) <u>initiatives</u> can help in collection of <u>lightweight packaging waste</u> (of which around <u>half is a plastic</u> <u>waste</u>).
- Especially successful are Deposit Refund Systems (DRS). → EC (28 May 2018): Member States will be obliged to <u>collect</u> 90% of single-use plastic drinks bottles by 2025, for example through deposit refund schemes;
- <u>DRSs</u> in Europe regularly achieve <u>collection rates</u> of **80-90%** while systems without deposits (via containers, green dot) have <u>collection rates</u> of **40%** on average.
- Modern DRSs are recognized today as a <u>very efficient instrument to reduce</u>
 <u>littering and improve recycling;</u>
- they proved themselves with <u>large amounts of collected and recovered waste</u> packaging with a <u>small amount of impurities (contamination)</u> within the collected material, which is a <u>prerequisite for high-efficiency recycling</u> in a **closed loop** system (e.g. bottle-to-bottle).
- Unfortunately, these schemes are usually <u>limited</u> only <u>to one segment</u> of packaging waste – <u>beverage containers</u>.

Deposit vs. Green dot system performance

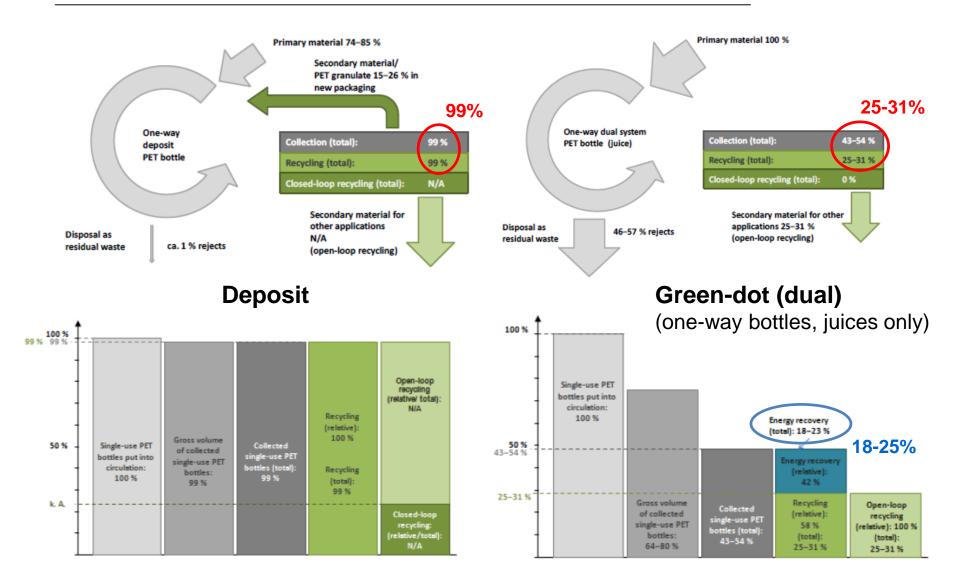


Fig. 3. Comparison of one-way (PET packaging) deposit and dual systems. (PWC, 2011.)

Energy recovery

- Regarding the mentioned <u>energy recovery of plastic waste</u>, which is today <u>predominately</u> done by <u>incineration</u> in <u>dedicated waste-to-energy</u> and <u>cement</u> <u>plants</u>, there are other potentially more advanced ways.
- Pyrolysis and gasification <u>thermochemical conversions</u>, are technologies used to <u>valorise plastic waste</u> by <u>converting</u> it <u>into valuable products</u>, such as <u>fuels</u>, <u>chemicals and energy</u>.
- Furthermore, <u>chemical depolymerization</u>, <u>catalytic cracking and reforming</u>, and <u>hydrogenation</u>, among others, are considered as **chemical recycling** in which plastic waste is converted into <u>feedstock</u>, like <u>monomers</u>, <u>oligomers</u> and <u>higher hydrocarbons</u> that can be <u>used to produce new polymers</u>.
- What is <u>currently lacking</u>, is that the <u>EU legislation does not distinguish these</u> more advanced <u>thermochemical conversions</u>, nor for that matter <u>chemical</u> <u>recycling</u>, from the <u>energy recovery processes</u>, which is the matter that should be dealt with in the near future.
- Project "*Smart energy carriers in recovery of plastic waste*" (NEOPLAST) supported by the Croatian Science Foundation (3200).

Gasification of plastic waste

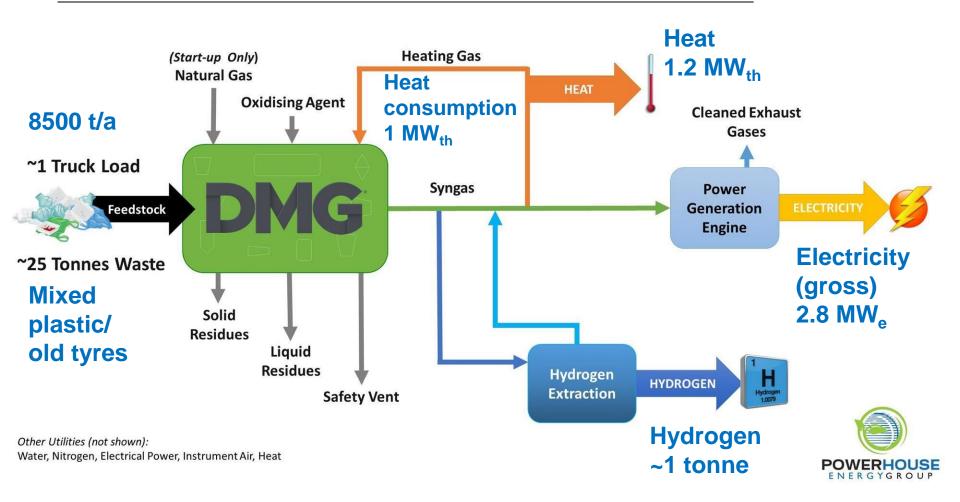
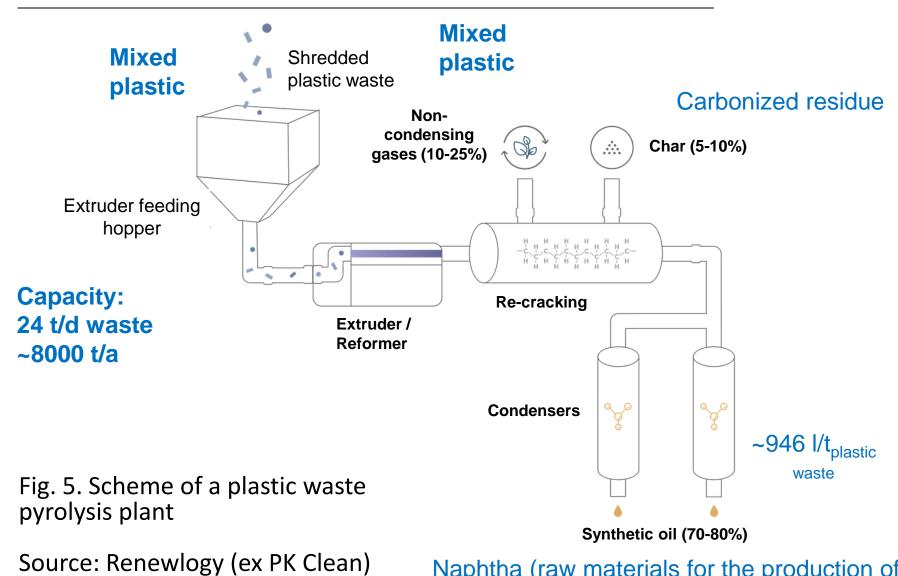



Fig. 4. Simplified flow diagram - distributed modular gasification (DMG[®]- Distributed Modular Gasification).

Source: PowerHouse Energy Group plc

Pyrolysis of plastic waste

Naphtha (raw materials for the production of polymers, diesel fuel and other petrochemical products)

<u>热流科学与工程教育部重点实验室</u> Key Lab of Thermo-Fluid Science & Engineering, MOE

Panel: The sustainability of plastic and its alternatives In SDEWES 2019, October 1-6, 2019, Dubrovnik, Croatia

Technologies and challenges of converting waste plastics to fuels

Ting Ma

Key Lab of Thermo-Fluid Science and Engineering, MOE

School of Energy and Power Engineering

Xi'an Jiaotong University

Oct. 04, 2019

Contents

- 1. Waste plastics status in China
- 2. Thermal pyrolysis used for plastic waste
- 3. Catalytic cracking used for plastic waste
- 4. Summary

The 70th Anniversary of the Founding of

The People's Republic of China

1.1 Waste status in China

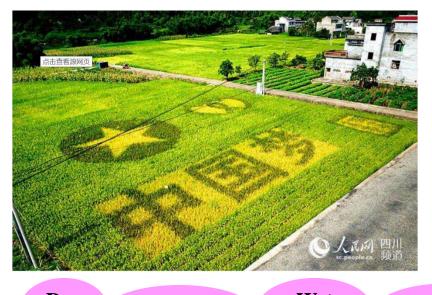
Hong Kong's beach

Lake Taihu in Soochow

A "Mountain" of waste in Hebei

The annual output of municipal solid waste in china is about 400 million tons, with the annual growth rate of about 8%!

Waste incineration flue gas

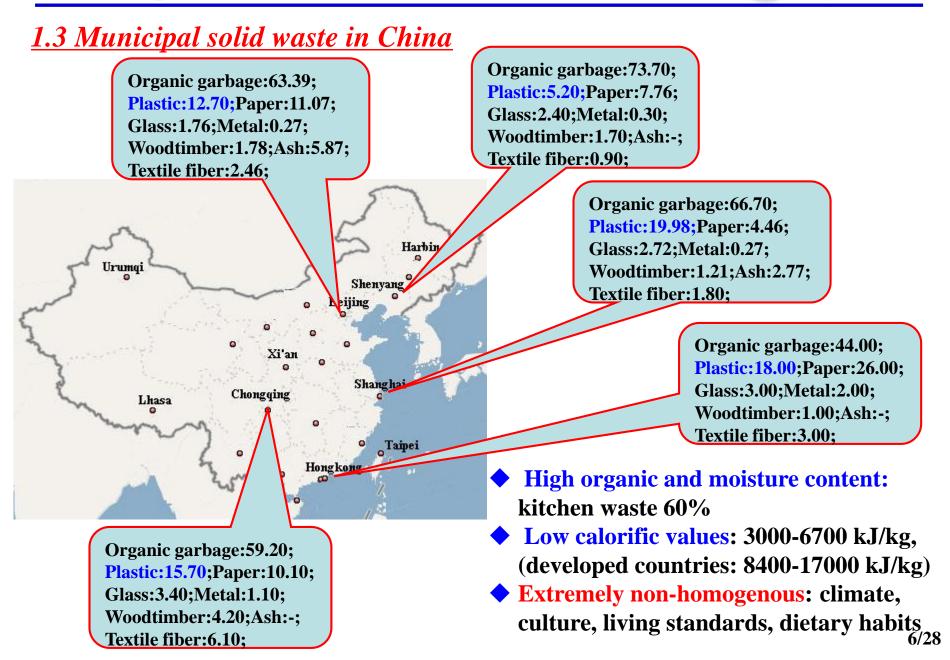

Air pollution: fog weather

Human healthy

1.Waste plastics Status in China

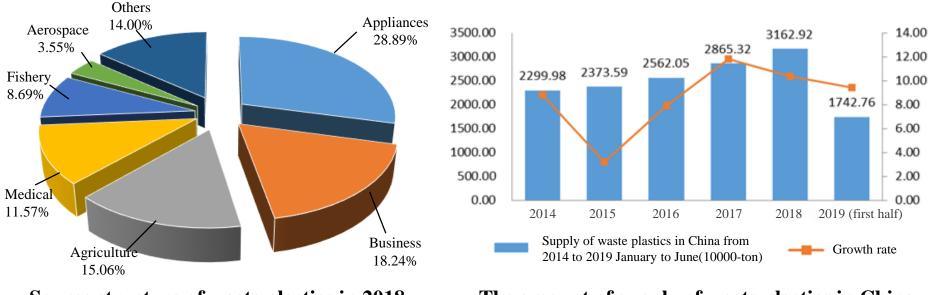
<u>1.2 Ecological and environmental protection in Chinese Dream (中国梦)</u>

China highly values ecological and environmental protection. Guided by the conviction that lucid waters and lush mountains are invaluable assets, the country advocates harmonious coexistence between humans and nature, and sticks to the path of green and sustainable development (绿水青 山就是金山银山).



Waste classification education and guidance

1.Waste plastics Status in China

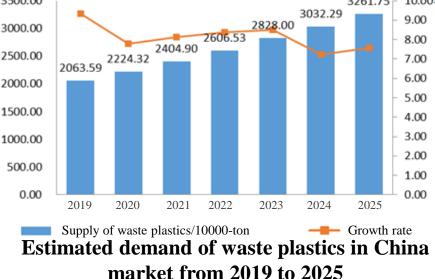


1.Waste plastics Status in China

1.4 Source of waste plastics in China

Source structure of waste plastics in 2018

The amount of supply of waste plastics in China


- The appliance industry, business domain and agriculture industry provide more than 60% of the total source of waste plastics.
- The amount of supply of waste plastics keeps a rapid increment (>10%), and it reached 31.63 million tons in 2018.

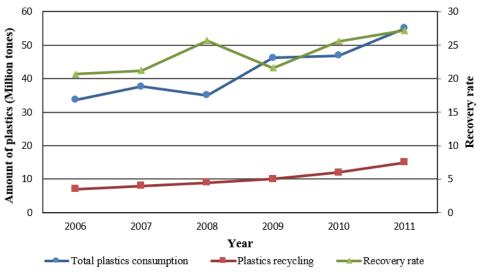
1.5 Commercial demand of waste plastics in China

Revenue of waste plastics in China market

r r								
	2014	2015	2016	2017	2018	2019/First Half		
Demand /10^4-ton	1350.63	1471.46	1588.29	1588.29	1887.61	1037.99		
Growth rate/%	8.83	8.95	7.94	8.77	9.27	9.32		
Investment/Billion RMB	24.57	25.65	27.96	31.56	37.39	20.72		
Growth rate/%	9.59	4.40	9.01	12.89	18.48	10.41		
Rate of profit/%	23.02	22.93	23.07	23.07	23.02	22.98		
3500.00	2022.2	3261.75 10.00						

- The demand and investment of waste plastics industry are increasing rapidly.
- The plastics industry has high profit, averagely more than 23%.

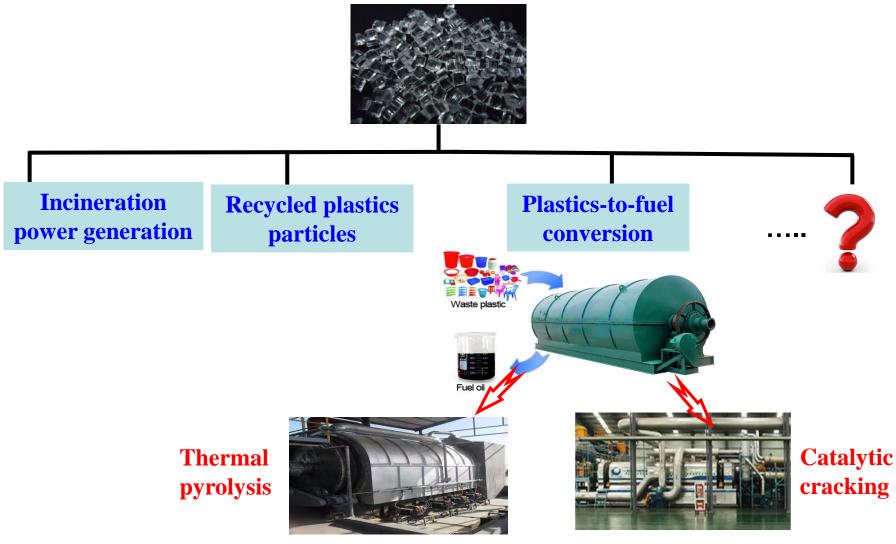
1.6 Waste plastics treatment methods in China



1.7 Waste plastics recycling status in China

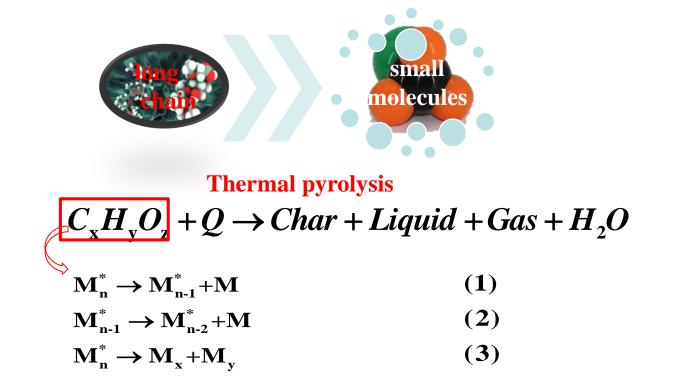
Waste plastics consumption, recycling, and recovery rate in China

	Unit	2006	2007	2008	2009	2010	2011
Total plastics consumption	Million tons/year	33.7	37.7	35.0	46.2	46.9	55.1
Plastics recycling	Million tons/year	7	8	9	10	12	15
Recovery rate	%	20.7	21.2	25.7	21.6	25.6	27.2

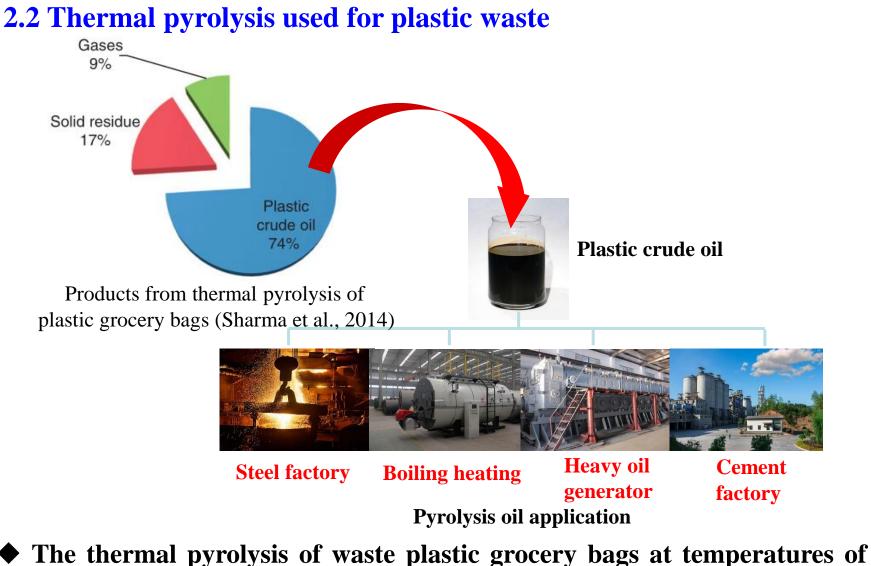


Waste plastics consumption, recycling, and recovery rate from 2006 to 2011

♦ With the development of economy, ecological environment and sustainable development consciousness, waste plastics recycling has received more attention in china.



1.8 Technologies of waste plastics recycling


2.1 Mechanism of thermal pyrolysis

Various steps in random degradation of thermal pyrolysis (Baljit et al., 2008)

- Thermal pyrolysis is a process of thermally degrading long chain polymer molecules into smaller, less complex molecules through heat and pressure.
- Thermal pyrolysis of the polymers follows either chain end degradation (Eqs. 1 and 2) or random degradation routes (Eq. 3)

420-440°C provides 74% yield of plastic crude oil.

2.3 Advantages and challenges of thermal pyrolysis used for plastic waste

Contrast of suppliers of wasteplastics oil technology (Predel et al., 2000)

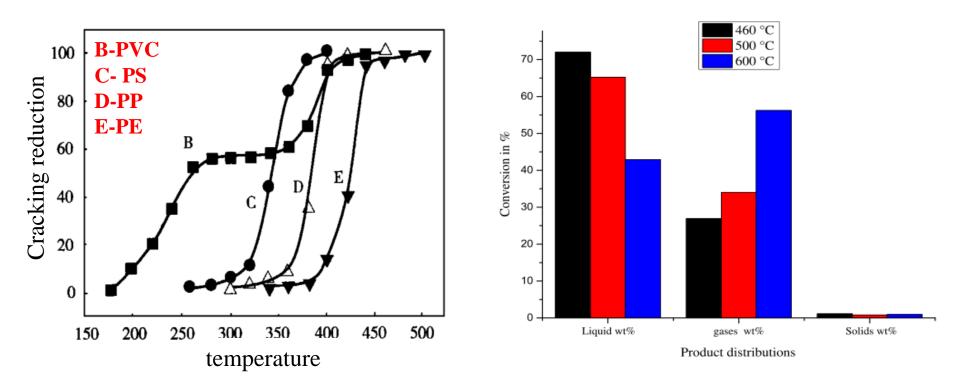
Thermal pyrolysis

Tech providers	Service area	Cracking process	Max design capability	Oil production (L·t ⁻¹)	Advantages:
providens	ui vu	process	(t·d ⁻¹)		(1) high amount of liquid oil.
Agilyx	North America	Thermal pyrolysis	45	799~837	② flexible
Cynar	Europe	Thermal pyrolysis	20	946	③ green technology④ easy to handle
Nexus Fuels	USA	Thermal pyrolysis	45	833~1060	Disadvantages:
Klean Industries	Japan	Thermal pyrolysis	150	unknown	 broad product range high temperature
Polymer Energy	India	Catalytic pyrolysis	10	738	③ low octane value liquids
Plastics Advanced Recycling Co.	China	Catalytic pyrolysis	60	606	(4) high residue contents

The thermal pyrolysis of waste plastic is simple and mature, but it needs high reaction temperature to get lighter hydrocarbons.

2.4 Influence factors on thermal pyrolysis

Hydrocarbon products at different temperatures


Mass balance of crude oil, residue and gas yields on pyrolysis of PE, PP (Bidhya et al., 2016)

Boiling point	Use	Researchers	Plastics	Reactor	Temperature	Crude oil (wt %)	Residue (wt %)	Gas (wt %)
35 ~ 185°C	motor gasoline		type	type	(°C)	(wt /0)	(WL 70)	(wt /0)
185 ~ 290°C	diesel #1	William et al.	PE	Parr mini bench top	500	93	0.0	7.0
290 ~ 350°C	diesel #2		MIXED	Proprietary (Natural State Research Inc)	370-420	90	5.0	
350 ~ 538°C	vacuum gas oil	Sarker et al.	MIAED					5.0
>538°C	residue							
		Alston et al.	MIXED	-	800	73	23.5	30.4
		Sharma et al.	HDPE	2 L batch reactor	440	74	17.0	9
		Buekens et al.	РР	-	740	48.8	1.6	49.6
		Sarker et al.	PETE-1	Distillation unit	405	14.25 (21.7 H ₂ O)	51.5	12.4

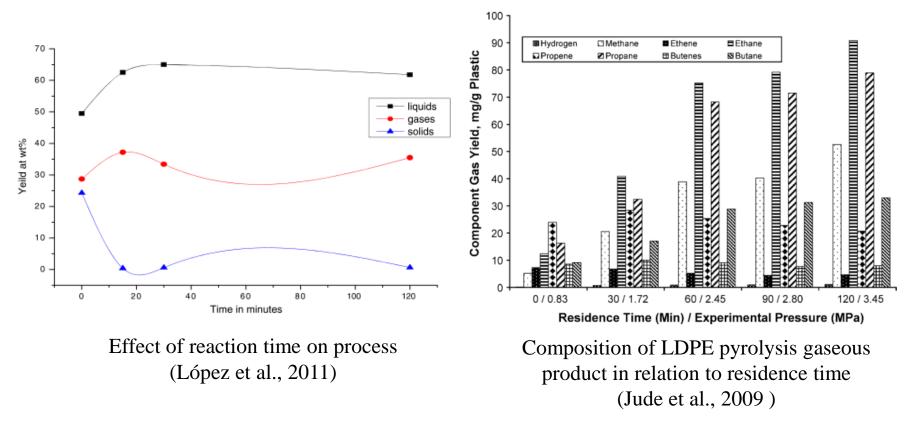
◆ The components and yields of products are determined by thermal treatment temperature, plastics type, residence time, and reactor type.

2.4 Influence factors on thermal pyrolysis---temperature

Temperature characteristics of thermal pyrolysis of various plastics (Li et al., 2001) Effect of temperature on conversion process (López et al., 2011)

- Temperature controls the pyrolysis reaction, so that it is one of the most important factors affecting the quality and quantity of pyrolysis products.
- The major drawback is the very broad product range and requirement of high temperature.

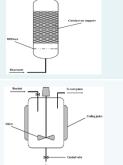
2.4 Influence factors on thermal pyrolysis---plastics type


Proximate analysis of plastics

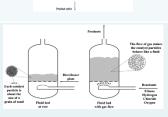
Raw materials	Reaction	Yi	elds in wt.	Refs.		
Kaw materials	temperature	Liquids	Gases	Residue		
HDPE (high-density polyethylene):WLO (waste lubricant oil)=(1:1)	460°C	100	-	-	Wang et al.	
LDPE (low-density polyethylene):WLO (waste lubricant oil)=(1:1)	460°C	99	-	-	Wang et al.	
PP (polypropylene)	420-440°C	96.7	2.2	1.1	Walendziewski et al.	
PS (polystyrene)	420-440°C	95.7	0.6	3.7	Walendziewskiet al.	
PE (polyethylene)	450°C	81.6	12.1	6.3	Beltramini et al.	
ABS (acryloni- trile butadiene styrene)	478°C	79	3	6	Jung et al.	

Thermal pyrolysis produces large amount of liquid oils for different plastics types.
17/28

2.4 Influence factors on thermal pyrolysis---residence time


Residence time is a temperature-dependent factor that has influence on product components, especially at low temperature.

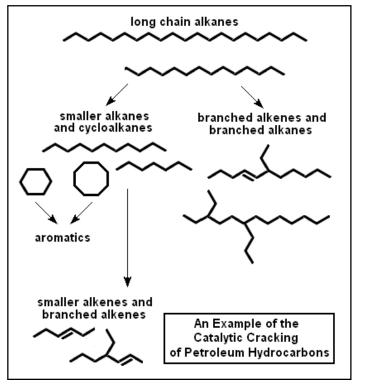
2.4 Influence factors on thermal pyrolysis---reactor type Different reactor types (Shafferina et al., 2016)


Type of reactors Batch reactor

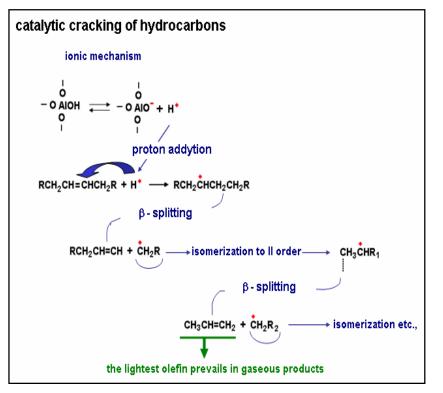
Fixed-bed reactor

Fluidized bed reactor

Conical spouted bed reactor



- closed system
- high conversion
- high labor costs
- easy to design
- available surface area
- larger surface area
- flexible
- large particle size distribution
- larger particles and difference in particle densities


Characteristic

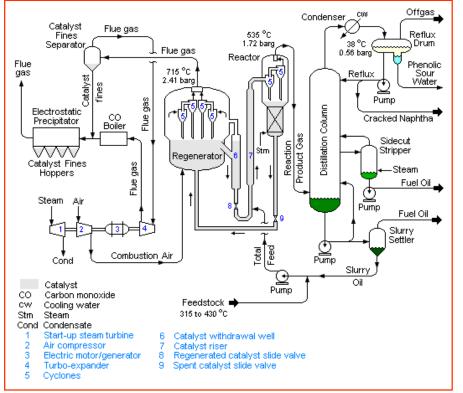
The reactor type has an important impact in the mixing of the plastics, residence time, heat transfer and efficiency of the reaction towards achieving the final desired product.

3.1 Mechanism of catalytic cracking

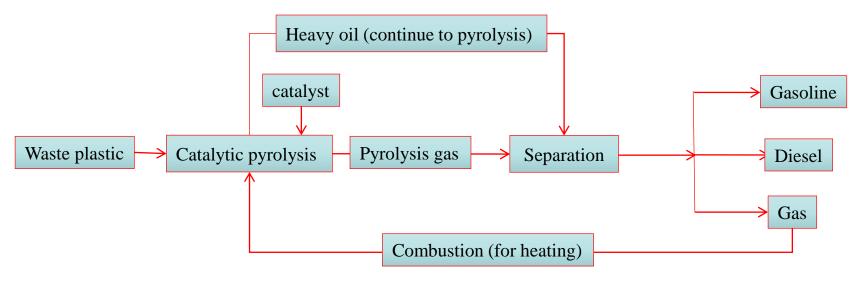
Example of catalytic cracking of petroleum hydrocarbons

Catalytic cracking of hydrocarbons

Catalytic cracking is an ionic process involving carbonium ions and are produced by: addition of a proton from an acid catalyst to an olefin and abstraction of a hydride ion from a hydrocarbon by the acid catalyst or by another carbonium ion.



3.2 Application of catalytic cracking

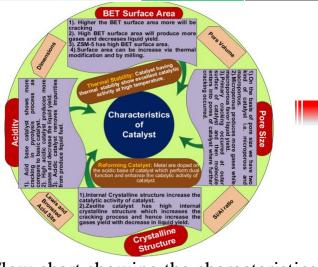

A typical fluid catalytic cracking unit in a petroleum refinery A schematic flow diagram of a fluid Catalytic Cracking unit used for petroleum refineries

Fluid catalytic cracking is one of the most important conversion processes used for petroleum refinery. It is widely used to convert the high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and other products.

3.3 Catalytic cracking used for plastic waste

Process of catalytic cracking

• Waste plastics was originally recycled by thermal pyrolysis, but catalytic cracking shows greater potential because it produces more gasoline with a higher octane rating, produces byproduct gases that have more carbon-carbon double bonds, and hence more economic value than those produced by thermal pyrolysis.


3. Catalytic cracking used for plastic waste

3.4 Effect of catalyst type on catalytic cracking of plastic waste

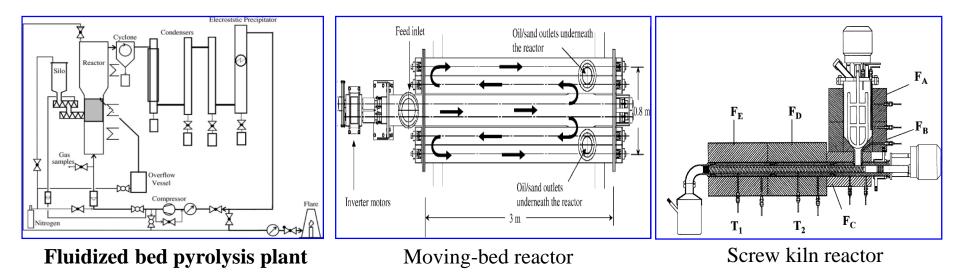
Catalyst type	SiO ₂ /Al ₂ O ₃ (w/w)	BET surface area (m ² /g)	Particle Size(µm)	Pore Size (nm)	Micropore Volume(cm ³ /g)	Micropore area (cm ³ /g)	Pore Volume (cm ³ /g)	Reference
HZSM - 5	30	400	NR	NR	NR	NR	NR	Lee (2012)
ZSM - 5		412	NR	NR	0.1	346.1	0.4	Lopez et al.(2011)
ZSM - 5		412	NR	NR	0.1	346.1	0.397	Lopez et al.(2012)
ZSM - 5		412	10 – 30	NR	0.1	346.1	0.397	Lopez et al.(2011c)
Red Mud		27.49	NR	NR	0.009	171	0.184	Lopez et al.(2011c)

Characteristics of catalyst

Flow chart showing the characteristics of catalysts (Achilias et al., 2007)

- Catalytic cracking on acid catalysts takes place with the formation of carbocations that require strong acid sites.
 - Acid strength and textural properties such as BET surface area, acidity, pore size, pore volume, thermal stability, and dimensions are the main characteristics of acid catalysts.

3.4 Effect of catalyst type on catalytic cracking of plastic waste


Effect of catalyst on pyrolysis process									
Catalyst	Quantity of catalyst	Feedstock used							
type	j	uscu	Liquid	Gases	Char				
FCC	50%	LDPE,HD PE,PP	72.1, 44.2, 64.7	19.4, 52.5, 20.0	8.5, 3.3, 15.3	Achilias et al.(2007)			
ZSM-5	5%	HDPE,PP	NR	NR	NR	Miskolczi et al.(2009)			
HZSM-5	20%	HDPE	NR	NR	NR	Hemandez et al.(2007)			
Natural Zeolite (Ni/Z, NiMo/Z, Co/Z, CoMo/Z)	5%	LDPE	23.88, 12.20, 23.92, 14.91	75.18, 86.30, 76.00, 83.71	0.94, 1.51, 0.92, 1.39	Sriningsih et al.(2014)			

• Catalysts have different effects on the pyrolysis process and products.

3. Catalytic cracking used for plastic waste

3.5 Effect of reactor type on catalytic cracking of plastic waste

- Waste plastics have high viscosity and low thermal conductivity, which have a great impact on heat and mass transfer. So a suitable reactor is very important.
- The process heat is introduced indirectly into the bed through radiant-heat tubes, in which the pyrolysis gas is incinerated. The exhaust gases are used to preheat the fluidizing gas by means of heat exchange.

4. Summary

- There are huge needs and markets of waste plastics recycling in China. The waste classification and related environmental policies bring great opportunity for the waste plastics recycling.
- Thermal pyrolysis is a simple and mature technology for the waste plastics recycling. But it needs high temperature and produces more liquid fuels. The thermal treatment temperature, plastics type, residence time and reactor type have significant effect on the thermal pyrolysis.
- Catalytic cracking shows greater potential because it needs lower operating temperature and produces more gas fuels. The catalyst and reactor types have great effect on the catalytic cracking. It is necessary to develop cheap and reused catalysts.

Acknowledgments

Research group leader: Prof. Qiuwang Wang

Mr. Zirui Xu

Mr. Jie Lian Mr. Zhenlin Wu Ms. Na Li **Data sources in section 1 are taken from: Research report on the market** survey and development trend of waste plastics in China from 2019 to 2025, Guangzhou Henglue Consulting Co. LTD.

Technologies and Challenges of converting waste plastics to fuel

Thank you for your attention!

Welcome comments!

Contact:

Dr. Ting Ma, Associate Professor

Associate Editor, ASME Journal of Solar Energy Engineering: Including Wind Energy and Building Energy Conservation

Key Lab of Thermo-Fluid Science and Engineering, MOE

School of Energy and Power Engineering

Xi'an Jiaotong University, China

Email: mating715@mail.xjtu.edu.cn