

Rethinking Future Industrial Energy Systems

Robin Smith

Adisa Azapagic Julia Jimenez

University of Manchester, UK

Outline

- 1. Industrial Energy Consumption and Emissions
- 2. Future Industrial Energy Systems
- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society
- 6. Case Study II

1. Industrial Energy Consumption and Emissions

2. Future Industrial Energy Systems

- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society
- 6. Case Study II

Industrial Emissions

$\checkmark\,$ Industry sector is the largest emitter of CO2 emissions

- In 2016, accounted for:
 - 36 % of global GHG emissions

2/3 coming from a small number of energy intensive industries

Global CO2 emissions by sector, 2016 [1]

✓ Industrial Clusters mission (UK)

- <u>Net-zero carbon industrial cluster</u> by 2040
- At least one <u>low-carbon cluster</u> by 2030

[1] OECD/IEA (2017). World Energy Outlook 2017.

Energy Demand

Industry is the largest consumer of energy worldwide

Energy demand for process heat by industrial sector 2012 [2]

Share and breakdown of energy demand , 2016 [2]

- ✓ 69% of Industrial Emissions are from the Process Industries
 - Accounts for 2/3 of the industrial emissions

[2] OECD/IEA (2017). World Energy Outlook 2017.

Process heating

- ✓ \approx 50% up to 500°C (mostly steam)
- ✓ Media:
 - Fired heat, steam, hot water

Industrial Energy Systems

Challenge of Global Energy Sustainability

Growth in industrial energy demand through the

Energy efficiency first

In 2014, rate of increase of energy demand slowed down to 1/3

Remarkable, but ...

The consumption will increase by 30% before 2040 [4]

Alone, not enough...

last vears [3]

to reduce the increasing demand of fossil fuels and their associated environmental impact

[3] OECD/IEA (2017). World Energy Outlook 2017.

[4] Kempener, R. & Saygin, D. (2014). Renewable Energy in Manufacturing – A technology roadmap for REmap 2030. International Renewable Energy Agency (IRENA).

Industrial Energy Systems

Challenge of Global Energy Sustainability

Switch to **renewables + energy efficiency** is required to achieve:

- 90% of emissions reduction needed by 2050
- Fulfill Paris Agreement
- Keep global temperature rise
 below 2 °C

Trend to move to a more <u>sustainable basis</u>

Current Situation

Renewable Energy Growth

2015

- 19% of global energy demand
- 23% of power generation
- Only 9% in industrial sector

- * Based on current policies of G20 countries
 ** Accelerated implementation of renewables REmap
- [5] IRENA (2017). Global Energy Transition Prospects and the Role of Renewables

Gives effective de-carbonisation *But..*

- Cause frequent fluctuations in power supply
- Require additional electric generation capacity

1. Industrial Energy Consumption and Emissions

2. Future Industrial Energy Systems

- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society
- 6. Case Study II

Cogeneration systems

CHP can cut your energy use by more than 40 percent

Flexible CHP Systems

Characteristics

But.. Flexible CHP systems can provide these grid services **but little attention paid so far**

[6] U.S. Department of Energy (2018). Flexible Combined Heat and Power (CHP) Systems

Integration of Renewables and Waste in Industrial Systems

Integration of Energy Storage in Industrial Systems

Transition of the Utility System

evolve existing systems to future demands with a sustainable basis

Outline

1. Industrial Energy Consumption and Emissions

2. Future Industrial Energy Systems

- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society
- 6. Case Study II

Utility System Components

Modelling Utility System Components

Degrees of Freedom

Models need to capture the effect of the <u>load</u> on the <u>efficiency</u>

Modelling Utility Systems Components

Degrees of Freedom

Modelling Utility Systems Components Flexibility at the Design Stage

Number and Size of Units

Large units at part-load operation during most of the time – Active redundancy *or...* Several small units at full-load, one switched off – Passive redundancy

▶ Bigger size \rightarrow more efficient **but...** partial-load \rightarrow less efficient

▶ Fewer units \rightarrow less expensive **but...** fewer units \rightarrow less reliable

Modelling Utility Systems Components Flexibility at the Design Stage

Type of Units

More units of the same type

or...

More units of the different types, but performing the same function

- Multiple design and operational degrees of freedom
- Variables highly interrelated

Complex optimization

Process Integration in Utility Systems Steam System

Steam mains

Process Integration in Utility Systems Steam System

✤ Non-isothermal

Steam generation

Synthesis methods have previously only included the latent heat

Process Integration in Utility Systems System Structure

Optimize a superstructure including all structural options to obtain an energy system structure and optimum conditions

Process Integration in Utility Systems Optimization

Problem Formulation

Utility system design with optimal steam main operating conditions involves:

Variation with time

Previously, the designs were based on <u>nominal operating</u> <u>conditions</u> of each process

BUT...

In the reality, operating conditions and the environmental conditions will vary significantly through time

Variation with time

Multi-period approach

Various scenarios to represent different operating scenarios

Variation with time

Synthesis of utility systems accounting for energy demand variation

Integration of Energy Storage

Thermal storage

- For steam:
 - Steam accumulators
 - Short-term storage (days)

Battery storage

- Different kind of batteries:
 - Li-ion
 - NaS
 - Lead-Acid
- Different efficiencies and costs
- Short-term storage (up to a week)

Methodology Overview Optimisation

Decomposition

Two different approaches to the optimisation

	sMILP	Two-stage		
Description	Sequence of MILP optimisation and simulation stages.	Master problem (rMINLP) followed by a non-linear sub problem		
CPU time	Fastest (< 500 s)	Faster that commercial global solvers (< 1000 s) - BARON 10 times slower		
Global optimality	Cannot be guaranteed	Guaranteed		

Outline

- **1. Industrial Energy Consumption and Emissions**
- 2. Future Industrial Energy Systems
- 3. Conceptual Design of Future Industrial Energy Systems

4. Case Study I

5. Energy and Society

6. Case Study II

Case Study I

Demand Variation

Background

- A 6-plant chemical cluster
- Utility system to satisfy site thermal and electrical demand
- Electricity price fluctuations
- Semi-continuous processes
- Variation in the production profiles of the different units (including maintenance/shut down)

Constraints

- Utility temperature constraints.
- Equipment load and size.
- Max electricity import 1 MW
- Max electricity export 10 MW

Production profiles of an Industrial Chemical Cluster across a year [7]

Case Study I

Design assumptions

Fuels price assumed to be constant across the year

Electricity price fluctuations:

- Across the day off-peak, peak and base
- Across the year winter, summer and mid-season

Variation of Industrial annual energy demand:

• Clustered in 20 periods in total each with 3 tariffs

Total periods: 60

2 scenarios are studied in order to analyse the effect of energy demand variation

Case Considerations		Objective Function		
Case A	Variable energy demand	TAC		
Case B	Variable energy demand	CO ₂ emissions		

Electricity prices*	Off-Peak	Peak	
Summer			
purchase (£/MWh _{el})	111.4	127.2	
sale (£/MWh _e l)	81.7	96.4	
Mid-season			
purchase (£/MWh _{el})	111.4	127.2	
sale (£/MWh _{el})	81.7	96.4	
Winter			
purchase (£/MWh _{el})	111.4	127.2	
sale (£/MWheI)	81.7	96.4	

*The consumed electricity, both purchased and produced, is subject to an excise tax which is calculated iteratively based on monthly consumption thresholds according to Testo Unico (2012).

Emissions factors [t CO ₂ /MWh]			
Grid	0.308		
Fuel gas	0.485		
Natural gas	0.331		

Case A: Variable Energy Demand Comparison of the designs

Optimal design configuration – nominal Optimal design configuration – variable demand

Case A: Variable Energy Demand

Electrical Operation

- Negative values represent export
- Electricity demand satisfied by 4 steam turbines

Thermal Operation

 Thermal demand satisfied by 2 boilers, and a hot oil circuit

Energy storage is not selected.

Design of a **flexible utility system operating at optimal conditions** may be more beneficial than including energy storage.

Case A: Variable Energy Demand Sensitivity Analysis

Difference Between	40%	60%	80%	100%	230%
Peak and Off-peak					
Electricity					
TAC (mm£/y)	13.81	13.92	14.04	14.14	14.24
Operating cost					
(mm£/y)	7.99	7.29	7.35	7.45	7.64
Capital cost (mm£/y)	6.81	6.63	6.69	6.58	6.60
Battery Capacity	0.00	0.00	0.00	0.00	4.00
(MWh)					

- Lead battery storage becomes economic when the difference between off-peak and peak prices of electricity is 2.3 times higher
- An analysis based on the spot market price of electricity price is recommended, to explore potential benefits of greater interaction with the grid (and a higher energy price fluctuation)

-

Case B: Minimum CO₂ Emissions

 Electricity import is favoured due to lower CO₂ emission factor of the grid

Further analysis of

trade-off between

reduction of CO2

minimum TAC cost

should be carried out

emissions and

Energy storage becomes economically attractive when decarbonisation takes over TAC as objective function

Case Study Summary

Case	Base Case	Case A	Case C
Objective function	min TAC	min TAC	min CO ₂ emissions
Electricity price variation	N/A	-	-
Operating costs [m£/y]	6.64	6.80	9.65
Capital costs [m£/y]	4.83	5.13	8.70
CO ² emissions [t/y]	153,866	138,855	108,247
TAC [m£/y]	11.47	11.93	18.35

- Utility system design based on nominal consumptions may lead to a lower capital cost. However, its energy efficiency is lower, leading to higher GHG emissions.
- Based on the current energy prices (fluctuations) and for a grassroots design, it is cheaper to alter the use of utility system components rather than incorporate energy storage.
- At significant fluctuations in electricity price, energy storage implementation has the potential to reduce the TAC cost of the utility system.
- Electricity storage has the potential to reduce the CO2 emissions of the utility system. However, there is a trade-off with the TAC required for that system.

Outline

- **1. Industrial Energy Consumption and Emissions**
- 2. Future Industrial Energy Systems
- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society

6. Case Study II

Energy and Society

- Society needs energy in the form of electricity, heat and transportation energy
- Supply of these needs has traditionally not been integrated

Energy and Society

Energy-Water-Food Nexus

- Electricity generation consumes some 15% of global freshwater water withdrawals
- 18% of global energy is consumed for water extraction, treatment and distribution
- Food production accounts for 70% of water withdrawals and 30% of energy consumption globally
- These interrelationships among the energy, food and water (EFW) systems are known as the EFW nexus

^{1.} International Energy Agency (2001). Water for Energy. www.worldenergyoutlook.org/resources/water-energynexus.

^{2.} FAO (2011a) The state of the world's land and water resources for food and agriculture – Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.

^{3.} FAO (2011b) Energy-smart for people and climate - Issue paper. Food and Agriculture Organization of the United Nations, Rome.

Energy-Water-Food Nexus

The security of the Energy-Water-Food nexus is a central challenge to the goal of sustainable development

Demand Reduction

Domestic

Commercial

Industrial

Any sensible strategy starts with demand reduction!

Traditional Energy Supply Chain

Distributed Systems

Solutions Must be Local

- No one-size-fits-all solutions
- For example, solution for a city centre community will be different from the one required for a rural community
 - City centre community densely populated with domestic waste as a significant source of energy, etc
 - Rural community sparsely populated with agricultural waste as a significant source of energy, etc

Characteristic Zones

- Exhaust the economic potential for demand reduction
- Apply solutions based on distributed energy systems

System Integration

BUT

How do we optimize the system integration?

..... Back to basics

PROBLEM

An enormous number of ways to integrate the systems!

BUT, also an *opportunity* for novel solutions through novel ways to integrate systems

Let's look at an example...

Outline

- **1. Industrial Energy Consumption and Emissions**
- 2. Future Industrial Energy Systems
- 3. Conceptual Design of Future Industrial Energy Systems
- 4. Case Study I
- 5. Energy and Society
- 6. Case Study II

Case Study II - Input

Thermal and electrical demand data of a particular Zone in the UK

39 bands selected based on thermal demand profile and electricity price tariff structure

Case Study II - Input

Energy supply units (including CHPs and heat only units)

Technologies	Capacities available (MW)	
1. Gas engines	0.375 1.12 2.02 3.86 4.44 5.917	
2. Gas turbines	5.67 11.29 14.99	
3. Fuel cells	0.4	
4. Biodiesel engines	0.4 1.12 4.7	≻ CHP units
5. Land fill gas (LEG) engines	0.375 0.776 1.986	
6. Diesel engines	0.4 1.12 4.7	J
7. Boilers	0.25 1.4 3.5 7 10 20	
8. Solar heaters	0.1	Heat only
9. Ground source heat pump	3.166 4.152	Heat only units
10.Heat Storage		

Case Study II - Input

Present and future energy prices

	2010	2020	2030	2040	2050		
1. Natural gas price (p/kWh)	2.93	3.97		4.05			
2. Grid emission factor (kg/kWh)	0.485	0.370	0.210	0.040	0.020		
3. Electricity price (p/kWh)							
Off peak	4.80	5.58	9.14				
Average price	6.80	7.91	12.95				
Peak	7.00	8.14		13.33			

Source:

Department of Energy and Climate Change, Interdepartmental Analysts' Group, Valuation of energy use and greenhouse gas (GHG) emissions, tool kit, 2012 <www.decc.gov.uk/en/content/cms/about/ec_social_res/iag_guidance/iag_guidance.aspx>

Case Study II - Solution

Model energy units

- Linear models for performance and cost against load
- Part-load performance linearised across different load ranges

Optimization model

- Demand for power and heat discretized
- Choice of energy unit from integer variables
- Choice of part-load model for energy unit from integer variables
- CO₂ emissions can be taxed if appropriate
- Formulate as MILP

Constraints

- Maximum/minimum load on units
- Maximum CO₂ emissions

Case Study II - Scenario 1

Scenario 1: Heating only DE centre (no cogeneration)

Thermal storage allowed with 24 hour balance

Case Study II - Scenario 2

Scenario 2: 'Island' style DE centre to satisfy both thermal and electrical demand

Thermal storage allowed with 24 hour balance

Case Study II - Scenario 3

Scenario 3: Supply heat and import/export electricity

 Electrical demand satisfied by producing on site or buying from the grid

Thermal storage allowed with 24 hour balance

Distributed Energy Systems

- Distributed energy applied across the UK for the domestic & commercial sectors will give CO₂ saving ~ 40%
 - Did not include industrial sector (missed opportunity for waste heat recovery)
 - Based on switch to DE based on current economics
 - No consideration of transportation energy
 - Only very limited renewables options included
 - No waste-to-energy
 - No power storage

http://www.eti.co.uk/wp-content/uploads/2014/03/ETI Macro Distributed Energy Report - 21 March 2013 2.pdf

Conclusions

- Many potential sources of energy, each with their advantages and disadvantages
- The variability of energy demand creates challenges for supply.
- The security of the Energy-Water-Food nexus is a central challenge to the goal of sustainable development.
- Novel solutions can in principle be developed through the use of optimization applied to the needs of geographic regions.
- Novel solutions need to be sought through novel ways to integrate energy systems.

Acknowledgement

The authors gratefully acknowledge the financial support from the Research Council of Norway and partners of the HighEFF project.

Thanks for your attention

תודה Dankie Gracias Спасибо Merci Takk Köszönjük Terima kasih Grazie Dziękujemy Dėkojame Ďakujeme [`]Vielen Dank Paldies Kiitos Täname teid _{讲谢} Kiitos **–** 谢谢 Tak 感謝您 Obrigado Teşekkür Ederiz 감사합니다 Σας ευχαριστούμε υουραι Bedankt Děkujeme vám ありがとうございます Tack

Any question?